>>

B

:=

6

EPUB 🗸

American Society for Microbiology Journal of Virology Volume 90, Issue 14, 15 July 2016, Pages 6573-6582 https://doi.org/10.1128/JVI.03079-15

Virus-Cell Interactions

Bat Severe Acute Respiratory Syndrome-Like Coronavirus WIV1 Encodes an Extra Accessory Protein, ORFX, Involved in Modulation of the Host Immune Response

Lei-Ping Zeng^a, Yu-Tao Gao^a, Xing-Yi Ge^a, Qian Zhang^a, Cheng Peng^a, Xing-Lou Yang^a, Bing Tan^a, Jing Chen^a, Aleksei A. Chmura (D^b, Peter Daszak^b, and Zheng-Li Shi (D^a)

^aKey Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China

^bEcoHealth Alliance, New York, New York, USA

ABSTRACT

Bats harbor severe acute respiratory syndrome (SARS)-like coronaviruses (SL-CoVs) from which the causative agent of the 2002-2003 SARS pandemic is thought to have originated. However, despite the fact that a large number of genetically diverse SL-CoV sequences have been detected in bats, only two strains (named WIV1 and WIV16) have been successfully cultured *in vitro*. These two strains differ from SARS-CoV only in containing an extra open reading frame (ORF) (named ORFX), between ORF6 and ORF7, which has no homology to any known protein sequences. In this study, we

